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Polarization of the Longitudinal Pochhammer–Chree Waves
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The exact solutions of the linear Pochhammer – Chree equation for propagating harmonic
waves in a cylindrical rod, are analyzed. Spectral analysis of the matrix dispersion
equation for longitudinal axially symmetric modes is performed. Analytical expressions
for displacement fields are obtained. Variation of wave polarization on the free surface
due to variation of Poisson’s ratio and circular frequency is analyzed. It is observed that
at the phase speed coinciding with the bulk shear wave speed all the components of the
displacement field vanish, meaning that no longitudinal axisymmetric Pochhammer –
Chree wave can propagate at this phase speed.
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1. Introduction

The equation for propagating harmonic waves in a cylindrical rod, now known as
the Pochhammer – Chree equation, was for the first time derived in [1 – 3]. How-
ever, the corresponding solutions binding the phase or group speed with frequency
remained unexplored until mid of the last century, when the first branches of the
dispersion curves were obtained numerically in [4 – 22]. In [4 – 20] longitudinal
axially symmetric modes were explored, and in [21, 22] flexural and torsional modes
were also considered. According to [16] the axially symmetric longitudinal modes
are denoted by L(0,m), where m is the mode number.

In [4 – 6] by asymptotic methods were obtained analytical formulas for both
short-wave (c1,lim) and long-wave (c2,lim) limits for the phase speed for the lowest
(fundamental) branch of the longitudinal axially symmetric modes. Following [6]
(see also [15]), the short-wave limit speed (c1,lim) at ω → ∞:

c1,lim = cR (1)
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coincides with Rayleigh wave speed (cR), while the long-wave limit speed c2,lim
yields [15]:

c2,lim =

√
E

ρ
(2)

where E is Young’s modulus, and ρ is the material density. In [6, 15] the long-wave
limit c2,lim was named as the “rod” wave speed.

Dispersion curves related to higher axially symmetric modes were studied in
[4–20]. In [8] the first several roots of the dispersion equation were (numerically)
obtained and it was revealed that some of the roots were complex relating to atten-
uating modes. Beside dispersion curves, variation of the displacement magnitudes
along radius of the rod for the first three L(0,m) modes at fixed Poisson’s ratio
ν = 0.3317 was analyzed in [19].

One of the interesting peculiarities of propagating L(0,m), m > 1 modes at
γ → 0, where γ is the wave number (γ = 2π/λ, λ is the wavelength), corresponds
to the zero slope of the dimensionless frequency Ω [15]:

lim
γ→0

∂Ω

∂γ
= 0 (3)

In (3) Ω = ωR/c2 with ω being circular frequency, R is radius of the rod cross
section, and c2 speed of the bulk shear wave. Actually, condition (3) means presence
of the horizontal asymptote in the dispersion relation ω(c) at the phase speed c → ∞
for higher longitudinal axially symmetric modes. Resemblance with the dispersion
curves at c → ∞ for higher modes of Lamb waves can be observed, see [23].

Extensions of the Pochhammer – Chree waves to helical waves (longitudinal
axially symmetric modes) that relate to non-integer coefficients at the angle coor-
dinate in the corresponding potentials, were analyzed in [24–26].

2. Principle equations

Equation of motion for an isotropic medium at absence of body forces can be rep-
resented in a form

c21∇divu− c22rot rotu=∂2
ttu (4)

where u is the displacement field, c1, c2 are speeds of bulk longitudinal and shear
waves respectively, and:

c1 =

√
λ+ 2µ

ρ
c2 =

√
µ

ρ
(5)

In (5) λ, µ are Lame’s constants, and ρ is a material density.

The Helmholtz representation for the displacement field u yields:

u = ∇Φ+ rotΨ (6)

where Φ and Ψ are scalar and vector potentials respectively.
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In cylindrical coordinates representation (6) for the physical components of the
displacement field, becomes:

ur = ∂Φ
∂r + 1

r
∂Ψz

∂θ − ∂Ψθ

∂z

uθ = 1
r
∂Φ
∂θ + ∂Ψr

∂z − ∂Ψz

∂r

uz = ∂Φ
∂z + 1

r
∂
∂r (rΨθ)− 1

r
∂Ψr

∂θ

(7)

In (7) it is assumed that coordinate z directs along central axis of the rod. It is
assumed that the displacement field is axially symmetric, that yields:

uθ = 0 (8)

Substituting (6) into equation of motion (4) yields:

c21∆Φ = Φ̈ c22∆Ψ = Ψ̈ (9)

For a harmonic wave propagating along axis z, potentials (9) can be represented
in a form:

Φ = Φ0(x
′)eiγ(z−ct) Ψ = Ψ0(x

′)eiγ(z−ct) (10)

where, as before, γ is the wave number related to the phase speed c and circular
frequency ω by equation:

γ =
ω

c
(11)

In (10) x′ is the (vector) coordinate in the cross section of a rod (x′ = x− (n · x)n),
n is the wave vector; and z = n · x.

Substituting representations (10) into Eqs. (9), yields the Helmholtz equations
for the potentials:

∆Φ0 +

(
c2

c21
− 1

)
γ2Φ0 = 0 ∆Ψ0 +

(
c2

c22
− 1

)
γ2Ψ0 = 0 (12)

Axial symmetry of Φ0 ensures [13, 14]:

∂Φ0

∂θ
= 0 (13)

Equations (12), (13) result in Bessel’s equation:

1

r

d

dr
r
d

dr
Φ0(r) +

(
c2

c21
− 1

)
γ2Φ0(r) = 0 (14)

where c is the phase speed. The solution of Eq. (14) can be represented in terms
of the corresponding Bessel functions:

Φ0(r) = C1J0(q1r) + C2Y0(q1r) (15)

where Ck, k = 1, 2 are the unknown complex coefficients, and:

q2
1
=

(
c2

c21
− 1

)
γ2 (16)
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Axial symmetry of potential Ψ0 is satisfied by the following equations [13, 14]:

∂Ψr

∂θ
=

∂Ψθ

∂θ
=

∂Ψz

∂θ
= 0 (17)

Equations (12), (17) yield Bessel equations (for physical components):

1
r

d
dr r

d
drΨr(r) +

((
c2

c22
− 1

)
γ2 − 1

r2

)
Ψr(r) = 0

1
r

d
dr r

d
drΨθ(r) +

((
c2

c22
− 1

)
γ2 − 1

r2

)
Ψθ(r) = 0

1
r

d
dr r

d
drΨz(r) +

(
c2

c22
− 1

)
γ2Ψz(r) = 0

(18)

The solutions of Eqs. (18) are:

Ψθ(r) = C3J1(q2r) + C4Y1(q2r)
Ψr(r) = C5J1(q2r) + C6Y1(q2r)
Ψz(r) = C7J0(q2r) + C8Y0(q2r)

(19)

In (19) Ck, k = 3, ..., 8 are the unknown complex coefficients, and:

q2
2
=

(
c2

c22
− 1

)
γ2 (20)

Axial symmetry of the vector potential Ψ imposes another restriction [14, 16]:

Ψr = Ψz = 0 (21)

Now, accounting (7), (8) (15), (19), (21), the desired vector field corresponding to
the propagating longitudinal axially symmetric harmonic wave, becomes [19]:

ur = − [q1 (C1J1(q1r) + C2Y1(q1r)) + iγ (C3J1(q2r) + C4Y1(q2r))] e
iγ(z−ct)

uθ = 0
uz = [iγ (C1J0(q1r) + C2Y0(q1r)) + q2 (C3J0(q2r) + C4Y0(q2r))] e

iγ(z−ct)

(22)

Since components (22) vector field should be finite at r = 0 and noting that at
r → 0 Bessel’s functions Y0, Y1 are unbounded, the final representation flows out
from (22):

ur = − [q1C1J1(q1r) + iγC2J1(q2r)] e
iγ(z−ct)

uθ = 0
uz = [iγC1J0(q1r) + q2C2J0(q2r)] e

iγ(z−ct)

(23)

At deriving (23) from (22), the constant C3 is denoted by C2.

� Remark 1. Expressions (23) that at r = 0 the natural condition ur = 0 is
satisfied since J1(0) = 0. At the same time J0(0) = 1, so uz at r = 0 takes
the form:

uz = [iγC1 + q2C2] e
iγ(z−ct) (24)
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3. Dispersion equation

Traction free boundary conditions on a lateral cylindrical surface at r = R have the
form:

tν ≡ (λ(trε)ν + 2µε · ν)|r=R = 0 (25)

where ν is the (outward) surface normal.
Substituting the displacement representation (23) into boundary conditions (25),

yields the following equations written up to exponential multiplier eiγ(z−ct)):

trr ≡ λIε + 2µεrr

= −

 λ
(
q21 + γ2

)
J0(q1r)C1+

+ 2µ
r

[
q1C1 (q1rJ0(q1r)− J1(q1r))+
+iγC2 (q2rJ0(q2r)− J1(q2r))

] 
r=R

= 0

trz ≡ 2µεrz

= −µ

[
iγ [q1C1J1(q1r) + iγC2J1(q2r)]
+
[
iγq1C1J1(q1r) + q22C2J1(q2r)

] ]
r=R

= 0

(26)

Equations (26) result in the desired dispersion equation:

detA = 0 (27)

where A is a square and generally non-symmetric 2× 2 matrix with complex coef-
ficients:

A11 = −
((

q21 + γ2
) c21

c22
− 2γ2

)
J0(q1R) + 2q1

R J1(q1R)

A12 = −2iγ
R (q2RJ0(q2R)− J1(q2R))

A21 = −2iγq1J1(q1R)
A22 = −

(
q22 − γ2

)
J1(q2R)

(28)

At deriving (28) from (26) the following identity was used:

λ

µ
=

c21
c22

− 2 (29)

Two-dimensional (right) eigenvectors related to vanishing eigenvalues (kernel
eigenvectors) of matrix A define polarization of the corresponding Pochhammer –
Chree waves.

4. Displacement fields

Components of the kernel eigenvectors of matrix A, that correspond to vanishing
eigenvalues, are coefficients C1, C2 in expressions (23). Depending on the spectral
properties of matrix A, two cases can be considered.

4.1. Matrix A is (semi) simple

Substituting components of the kernel eigenvector that corresponds to vanishing
eigenvalue into Eq. (23) yields:

ur = −[q1(f±d)J1(q1r)+iγA21J1(q2r)]√
|A21|2+|f±d|2

eiγ(z−ct)

uz = [iγ(f±d)J0(q1r)+q2A21J0(q2r)]√
|A21|2+|f±d|2

eiγ(z−ct)

(30)
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where f, d are defined by coefficients Aij of matrix A, see expressions (28). In (30)
and further vanishing component uθ is not present.

Proposition 1. For (semi) simple matrix A the displacement component uz

vanishes at r = 0 and at c = c2 regardless of frequency.
Proof. For the considered case:

iγ (f ± d) = −q2A21 (31)

Equation (31) can be transformed to the equivalent equation:

iγq2 (A11 −A22) + q22A21 + γ2A12 = 0 (32)

Substituting expressions (28) into (32) at c = c2 ensures vanishing uz at r = 0.
Corollary. For the considered simple matrix A, expressions (30) are applicable

for any axially symmetric mode L(0,m), m > 0.

4.2. Matrix A is non-semisimple (contains Jordan block)

Substituting components of the kernel eigenvector into (23) with account of condi-
tions of degeneracy, yields:

ur = −[q1f J1(q1r)+iγA21J1(q2r)]√
|A21|2+|f |2

eiγ(z−ct)

uz = [iγ f J0(q1r)+q2A21J0(q2r)]√
|A21|2+|f |2

eiγ(z−ct)

(33)

Proposition 2. For non-semisimple matrix A the displacement component uz

does not vanish at r = 0 and at c = c2 regardless of frequency.
Proof. For the considered case condition of non-semisimplicity of A takes the

form:
iγ f = −q2A21 (34)

Equation (34) can be transformed to the equivalent equation:

iγ (A11 −A22) + 2q2A21 = 0 (35)

Substituting (28) into (35) at c = c2 reveals that condition (34) does not hold.
Corollary. For the considered non-semisimple matrix A, expressions (30) are

applicable for any axially symmetric mode L(0,m), m > 0.

� Remark. 2. Substituting phase speed c = c2 into (28) reveals that at c2
matrix A is simple with the following one kernel (right) eigenvector:(

0
1

)
↔ λ = 0 (36)

Eigenvector (36) corresponds to the following coefficients in representation (23):

C1 = 0, C2 = 1 (37)

Analysis of expressions (28) and (30) for the considered case reveals that at c = c2
both displacement components ur and uz vanish regardless of the circular fre-
quency.
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5. Conclusions

The exact solutions of the linear Pochhammer – Chree equation for propagating
harmonic axisymmetric longitudinal waves L(0, m), m > 0 in a cylindrical rod,
were analyzed.

Closed form expressions for the displacement field were obtained for two cases
of degeneracy of the dispersion matrix: (i) single degeneracy of a simple matrix,
and (ii).double degeneracy of a non-semisimple matrix.

Spectral analysis of the matrix dispersion equation for longitudinal axially sym-
metric modes (L(0, m), m > 0) of Pochhammer – Chree waves was done, revealing
that no longitudinal modes can propagate at c2 phase speed.
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